Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Natural Mutagenesis-Enabled Global Proteomic Study of Metabolic and Carbon Source Implications in Mutant Thermoacidophillic Archaeon Sulfolobus solfataricus PBL2025.

Identifieur interne : 001298 ( Main/Exploration ); précédent : 001297; suivant : 001299

Natural Mutagenesis-Enabled Global Proteomic Study of Metabolic and Carbon Source Implications in Mutant Thermoacidophillic Archaeon Sulfolobus solfataricus PBL2025.

Auteurs : Wen Qiu [Royaume-Uni, République populaire de Chine] ; Trong Khoa Pham [Royaume-Uni] ; Xin Zou [République populaire de Chine] ; Saw Yen Ow [Australie] ; Phillip C. Wright [Royaume-Uni]

Source :

RBID : pubmed:28514846

Descripteurs français

English descriptors

Abstract

The thermoacidophilic crenarchaeon Sulfolobus solfataricus has been widely used as a model organism for archaeal systems biology research. Investigation using its spontaneous mutant PBL2025 provides an effective metabolic baseline to study subsequent mutagenesis-induced functional process shifts as well as changes in feedback inhibitions. Here, an untargeted metabolic investigation using quantitative proteomics and metabolomics was performed to correlate changes in S. solfataricus strains P2 against PBL2025 and under both glucose and tryptone. The study is combined with pathway enrichment analysis to identify prominent proteins with differential stoichiometry. Proteome level quantification reveals that over 20% of the observed overlapping proteome is differentially expressed under these conditions. Metabolic-induced differential expressions are observed along the central carbon metabolism, along with 12 other significantly regulated pathways. Current findings suggest that PBL2025 is able to compensate through the induction of carbon metabolism, as well as other anabolic pathways such as Val, Leu and iso-Leu biosynthesis. Studying protein abundance changes after changes in carbon sources also reveals distinct differences in metabolic strategies employed by both strains, whereby a clear down-regulation of carbohydrate and nucleotide metabolism is observed for P2, while a mixed response through down-regulation of energy formation and up-regulation of glycolysis is observed for PBL2025. This study contributes, to date, the most comprehensive network of changes in carbohydrate and amino acid pathways using the complementary systems biology observations at the protein and metabolite levels. Current findings provide a unique insight into molecular processing changes through natural (spontaneous) metabolic rewiring, as well as a systems biology understanding of the metabolic elasticity of thermoacidophiles to environmental carbon source change, potentially guiding more efficient directed mutagenesis in archaea.

DOI: 10.1021/acs.jproteome.6b00920
PubMed: 28514846


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Natural Mutagenesis-Enabled Global Proteomic Study of Metabolic and Carbon Source Implications in Mutant Thermoacidophillic Archaeon Sulfolobus solfataricus PBL2025.</title>
<author>
<name sortKey="Qiu, Wen" sort="Qiu, Wen" uniqKey="Qiu W" first="Wen" last="Qiu">Wen Qiu</name>
<affiliation wicri:level="1">
<nlm:affiliation>ChELSI Institute, Department of Chemical and Biological Engineering, the University of Sheffield , Mappin Street, Sheffield, S1 3JD, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>ChELSI Institute, Department of Chemical and Biological Engineering, the University of Sheffield , Mappin Street, Sheffield, S1 3JD</wicri:regionArea>
<wicri:noRegion>S1 3JD</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, 310058, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, 310058</wicri:regionArea>
<wicri:noRegion>310058</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pham, Trong Khoa" sort="Pham, Trong Khoa" uniqKey="Pham T" first="Trong Khoa" last="Pham">Trong Khoa Pham</name>
<affiliation wicri:level="1">
<nlm:affiliation>ChELSI Institute, Department of Chemical and Biological Engineering, the University of Sheffield , Mappin Street, Sheffield, S1 3JD, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>ChELSI Institute, Department of Chemical and Biological Engineering, the University of Sheffield , Mappin Street, Sheffield, S1 3JD</wicri:regionArea>
<wicri:noRegion>S1 3JD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zou, Xin" sort="Zou, Xin" uniqKey="Zou X" first="Xin" last="Zou">Xin Zou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai, 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ow, Saw Yen" sort="Ow, Saw Yen" uniqKey="Ow S" first="Saw Yen" last="Ow">Saw Yen Ow</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSL Limited , 45 Poplar Road, Parkville, Victoria 3052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSL Limited , 45 Poplar Road, Parkville, Victoria 3052</wicri:regionArea>
<wicri:noRegion>Victoria 3052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wright, Phillip C" sort="Wright, Phillip C" uniqKey="Wright P" first="Phillip C" last="Wright">Phillip C. Wright</name>
<affiliation wicri:level="1">
<nlm:affiliation>ChELSI Institute, Department of Chemical and Biological Engineering, the University of Sheffield , Mappin Street, Sheffield, S1 3JD, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>ChELSI Institute, Department of Chemical and Biological Engineering, the University of Sheffield , Mappin Street, Sheffield, S1 3JD</wicri:regionArea>
<wicri:noRegion>S1 3JD</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28514846</idno>
<idno type="pmid">28514846</idno>
<idno type="doi">10.1021/acs.jproteome.6b00920</idno>
<idno type="wicri:Area/Main/Corpus">001317</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001317</idno>
<idno type="wicri:Area/Main/Curation">001317</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001317</idno>
<idno type="wicri:Area/Main/Exploration">001317</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Natural Mutagenesis-Enabled Global Proteomic Study of Metabolic and Carbon Source Implications in Mutant Thermoacidophillic Archaeon Sulfolobus solfataricus PBL2025.</title>
<author>
<name sortKey="Qiu, Wen" sort="Qiu, Wen" uniqKey="Qiu W" first="Wen" last="Qiu">Wen Qiu</name>
<affiliation wicri:level="1">
<nlm:affiliation>ChELSI Institute, Department of Chemical and Biological Engineering, the University of Sheffield , Mappin Street, Sheffield, S1 3JD, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>ChELSI Institute, Department of Chemical and Biological Engineering, the University of Sheffield , Mappin Street, Sheffield, S1 3JD</wicri:regionArea>
<wicri:noRegion>S1 3JD</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, 310058, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, 310058</wicri:regionArea>
<wicri:noRegion>310058</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pham, Trong Khoa" sort="Pham, Trong Khoa" uniqKey="Pham T" first="Trong Khoa" last="Pham">Trong Khoa Pham</name>
<affiliation wicri:level="1">
<nlm:affiliation>ChELSI Institute, Department of Chemical and Biological Engineering, the University of Sheffield , Mappin Street, Sheffield, S1 3JD, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>ChELSI Institute, Department of Chemical and Biological Engineering, the University of Sheffield , Mappin Street, Sheffield, S1 3JD</wicri:regionArea>
<wicri:noRegion>S1 3JD</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zou, Xin" sort="Zou, Xin" uniqKey="Zou X" first="Xin" last="Zou">Xin Zou</name>
<affiliation wicri:level="1">
<nlm:affiliation>Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai, 200240, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai, 200240</wicri:regionArea>
<wicri:noRegion>200240</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ow, Saw Yen" sort="Ow, Saw Yen" uniqKey="Ow S" first="Saw Yen" last="Ow">Saw Yen Ow</name>
<affiliation wicri:level="1">
<nlm:affiliation>CSL Limited , 45 Poplar Road, Parkville, Victoria 3052, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>CSL Limited , 45 Poplar Road, Parkville, Victoria 3052</wicri:regionArea>
<wicri:noRegion>Victoria 3052</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wright, Phillip C" sort="Wright, Phillip C" uniqKey="Wright P" first="Phillip C" last="Wright">Phillip C. Wright</name>
<affiliation wicri:level="1">
<nlm:affiliation>ChELSI Institute, Department of Chemical and Biological Engineering, the University of Sheffield , Mappin Street, Sheffield, S1 3JD, United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>ChELSI Institute, Department of Chemical and Biological Engineering, the University of Sheffield , Mappin Street, Sheffield, S1 3JD</wicri:regionArea>
<wicri:noRegion>S1 3JD</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of proteome research</title>
<idno type="eISSN">1535-3907</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (biosynthesis)</term>
<term>Archaeal Proteins (genetics)</term>
<term>Archaeal Proteins (metabolism)</term>
<term>Carbon (metabolism)</term>
<term>Feedback, Physiological (MeSH)</term>
<term>Gene Expression Regulation, Archaeal (MeSH)</term>
<term>Glucose (metabolism)</term>
<term>Glucose (pharmacology)</term>
<term>Metabolic Networks and Pathways (genetics)</term>
<term>Metabolome (genetics)</term>
<term>Mutagenesis (MeSH)</term>
<term>Peptones (metabolism)</term>
<term>Peptones (pharmacology)</term>
<term>Proteome (genetics)</term>
<term>Proteome (metabolism)</term>
<term>Proteomics (methods)</term>
<term>Sulfolobus solfataricus (drug effects)</term>
<term>Sulfolobus solfataricus (genetics)</term>
<term>Sulfolobus solfataricus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (biosynthèse)</term>
<term>Carbone (métabolisme)</term>
<term>Glucose (métabolisme)</term>
<term>Glucose (pharmacologie)</term>
<term>Mutagenèse (MeSH)</term>
<term>Métabolome (génétique)</term>
<term>Peptones (métabolisme)</term>
<term>Peptones (pharmacologie)</term>
<term>Protéines d'archée (génétique)</term>
<term>Protéines d'archée (métabolisme)</term>
<term>Protéome (génétique)</term>
<term>Protéome (métabolisme)</term>
<term>Protéomique (méthodes)</term>
<term>Régulation de l'expression des gènes archéens (MeSH)</term>
<term>Rétrocontrôle physiologique (MeSH)</term>
<term>Sulfolobus solfataricus (effets des médicaments et des substances chimiques)</term>
<term>Sulfolobus solfataricus (génétique)</term>
<term>Sulfolobus solfataricus (métabolisme)</term>
<term>Voies et réseaux métaboliques (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Amino Acids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Archaeal Proteins</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Archaeal Proteins</term>
<term>Carbon</term>
<term>Glucose</term>
<term>Peptones</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Glucose</term>
<term>Peptones</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Acides aminés</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Sulfolobus solfataricus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Sulfolobus solfataricus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Metabolic Networks and Pathways</term>
<term>Metabolome</term>
<term>Sulfolobus solfataricus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Métabolome</term>
<term>Protéines d'archée</term>
<term>Protéome</term>
<term>Sulfolobus solfataricus</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Sulfolobus solfataricus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Carbone</term>
<term>Glucose</term>
<term>Peptones</term>
<term>Protéines d'archée</term>
<term>Protéome</term>
<term>Sulfolobus solfataricus</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Protéomique</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Glucose</term>
<term>Peptones</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Feedback, Physiological</term>
<term>Gene Expression Regulation, Archaeal</term>
<term>Mutagenesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Mutagenèse</term>
<term>Régulation de l'expression des gènes archéens</term>
<term>Rétrocontrôle physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The thermoacidophilic crenarchaeon Sulfolobus solfataricus has been widely used as a model organism for archaeal systems biology research. Investigation using its spontaneous mutant PBL2025 provides an effective metabolic baseline to study subsequent mutagenesis-induced functional process shifts as well as changes in feedback inhibitions. Here, an untargeted metabolic investigation using quantitative proteomics and metabolomics was performed to correlate changes in S. solfataricus strains P2 against PBL2025 and under both glucose and tryptone. The study is combined with pathway enrichment analysis to identify prominent proteins with differential stoichiometry. Proteome level quantification reveals that over 20% of the observed overlapping proteome is differentially expressed under these conditions. Metabolic-induced differential expressions are observed along the central carbon metabolism, along with 12 other significantly regulated pathways. Current findings suggest that PBL2025 is able to compensate through the induction of carbon metabolism, as well as other anabolic pathways such as Val, Leu and iso-Leu biosynthesis. Studying protein abundance changes after changes in carbon sources also reveals distinct differences in metabolic strategies employed by both strains, whereby a clear down-regulation of carbohydrate and nucleotide metabolism is observed for P2, while a mixed response through down-regulation of energy formation and up-regulation of glycolysis is observed for PBL2025. This study contributes, to date, the most comprehensive network of changes in carbohydrate and amino acid pathways using the complementary systems biology observations at the protein and metabolite levels. Current findings provide a unique insight into molecular processing changes through natural (spontaneous) metabolic rewiring, as well as a systems biology understanding of the metabolic elasticity of thermoacidophiles to environmental carbon source change, potentially guiding more efficient directed mutagenesis in archaea.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28514846</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>04</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1535-3907</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2017</Year>
<Month>07</Month>
<Day>07</Day>
</PubDate>
</JournalIssue>
<Title>Journal of proteome research</Title>
<ISOAbbreviation>J Proteome Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Natural Mutagenesis-Enabled Global Proteomic Study of Metabolic and Carbon Source Implications in Mutant Thermoacidophillic Archaeon Sulfolobus solfataricus PBL2025.</ArticleTitle>
<Pagination>
<MedlinePgn>2370-2383</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/acs.jproteome.6b00920</ELocationID>
<Abstract>
<AbstractText>The thermoacidophilic crenarchaeon Sulfolobus solfataricus has been widely used as a model organism for archaeal systems biology research. Investigation using its spontaneous mutant PBL2025 provides an effective metabolic baseline to study subsequent mutagenesis-induced functional process shifts as well as changes in feedback inhibitions. Here, an untargeted metabolic investigation using quantitative proteomics and metabolomics was performed to correlate changes in S. solfataricus strains P2 against PBL2025 and under both glucose and tryptone. The study is combined with pathway enrichment analysis to identify prominent proteins with differential stoichiometry. Proteome level quantification reveals that over 20% of the observed overlapping proteome is differentially expressed under these conditions. Metabolic-induced differential expressions are observed along the central carbon metabolism, along with 12 other significantly regulated pathways. Current findings suggest that PBL2025 is able to compensate through the induction of carbon metabolism, as well as other anabolic pathways such as Val, Leu and iso-Leu biosynthesis. Studying protein abundance changes after changes in carbon sources also reveals distinct differences in metabolic strategies employed by both strains, whereby a clear down-regulation of carbohydrate and nucleotide metabolism is observed for P2, while a mixed response through down-regulation of energy formation and up-regulation of glycolysis is observed for PBL2025. This study contributes, to date, the most comprehensive network of changes in carbohydrate and amino acid pathways using the complementary systems biology observations at the protein and metabolite levels. Current findings provide a unique insight into molecular processing changes through natural (spontaneous) metabolic rewiring, as well as a systems biology understanding of the metabolic elasticity of thermoacidophiles to environmental carbon source change, potentially guiding more efficient directed mutagenesis in archaea.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Qiu</LastName>
<ForeName>Wen</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>ChELSI Institute, Department of Chemical and Biological Engineering, the University of Sheffield , Mappin Street, Sheffield, S1 3JD, United Kingdom.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, 310058, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pham</LastName>
<ForeName>Trong Khoa</ForeName>
<Initials>TK</Initials>
<AffiliationInfo>
<Affiliation>ChELSI Institute, Department of Chemical and Biological Engineering, the University of Sheffield , Mappin Street, Sheffield, S1 3JD, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zou</LastName>
<ForeName>Xin</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Ministry of Education Key Laboratory of Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University , Shanghai, 200240, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ow</LastName>
<ForeName>Saw Yen</ForeName>
<Initials>SY</Initials>
<AffiliationInfo>
<Affiliation>CSL Limited , 45 Poplar Road, Parkville, Victoria 3052, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wright</LastName>
<ForeName>Phillip C</ForeName>
<Initials>PC</Initials>
<Identifier Source="ORCID">0000-0002-8834-0426</Identifier>
<AffiliationInfo>
<Affiliation>ChELSI Institute, Department of Chemical and Biological Engineering, the University of Sheffield , Mappin Street, Sheffield, S1 3JD, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BB/F003420/1</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>06</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Proteome Res</MedlineTA>
<NlmUniqueID>101128775</NlmUniqueID>
<ISSNLinking>1535-3893</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019843">Archaeal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010461">Peptones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>73049-73-7</RegistryNumber>
<NameOfSubstance UI="C001830">tryptones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019843" MajorTopicYN="N">Archaeal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025461" MajorTopicYN="N">Feedback, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019848" MajorTopicYN="Y">Gene Expression Regulation, Archaeal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055442" MajorTopicYN="N">Metabolome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016296" MajorTopicYN="Y">Mutagenesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010461" MajorTopicYN="N">Peptones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048229" MajorTopicYN="N">Sulfolobus solfataricus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Sulfolobus solfataricus</Keyword>
<Keyword MajorTopicYN="Y">carbon source</Keyword>
<Keyword MajorTopicYN="Y">enrichment analysis</Keyword>
<Keyword MajorTopicYN="Y">iTRAQ</Keyword>
<Keyword MajorTopicYN="Y">metabolomics</Keyword>
<Keyword MajorTopicYN="Y">proteomics</Keyword>
<Keyword MajorTopicYN="Y">quantitative metabolic pathways</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>4</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28514846</ArticleId>
<ArticleId IdType="doi">10.1021/acs.jproteome.6b00920</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Royaume-Uni</li>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Qiu, Wen" sort="Qiu, Wen" uniqKey="Qiu W" first="Wen" last="Qiu">Wen Qiu</name>
</noRegion>
<name sortKey="Pham, Trong Khoa" sort="Pham, Trong Khoa" uniqKey="Pham T" first="Trong Khoa" last="Pham">Trong Khoa Pham</name>
<name sortKey="Wright, Phillip C" sort="Wright, Phillip C" uniqKey="Wright P" first="Phillip C" last="Wright">Phillip C. Wright</name>
</country>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Qiu, Wen" sort="Qiu, Wen" uniqKey="Qiu W" first="Wen" last="Qiu">Wen Qiu</name>
</noRegion>
<name sortKey="Zou, Xin" sort="Zou, Xin" uniqKey="Zou X" first="Xin" last="Zou">Xin Zou</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Ow, Saw Yen" sort="Ow, Saw Yen" uniqKey="Ow S" first="Saw Yen" last="Ow">Saw Yen Ow</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001298 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001298 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28514846
   |texte=   Natural Mutagenesis-Enabled Global Proteomic Study of Metabolic and Carbon Source Implications in Mutant Thermoacidophillic Archaeon Sulfolobus solfataricus PBL2025.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28514846" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020